I.             Overview
                A.            Photosynthesis (energy & CO2 fixation) - chloroplasts
                B.            Respiratory & secondary metabolism
                                1.             Glycolysis - cytoplasm
                                2.             Krebs (Citric acid cycle) - mitochondrion
                                3.             Electron transport & oxidative phosphorylation - mitochondrion
II.            Glycolysis [glucose and fructose from Calvin cycle (photosynthesis)]
                A.            Glucose - glucose-6-p - fructose-6-p - fructose 1,6-dp - PGAL (=DHAP) - 1,3-dp-glycerate - 3-p-glycerate - 2-p-glycerate - phosphoenolpyruvate - pyruvate
                B.            Initial step(s) - energy requiring (2 ATP)
                C.            Subsequent steps
                                1.             Two - substrate-level phosphorylations (4 ATP)
                                2.             One - reduction of NAD to NADH (2 NADH)
                D.            Yield - 2 ATP & 2 NADH
                E.            Final product - 2 pyruvates
III.          Alternatives after glycolysis
                A.            Lactic acid - 2 ATP (no NADH) ... intense muscle activity (little O2 available)
                B.            Ethanol - 2 ATP (no NADH) ... fermentation
                C.            Krebs Cycle - (2 ATP) and oxidative phosphorylation (32 ATP)
IV.          Krebs Cycle - mitochondrial matrix
                A.            [pyruvate - acetyl CoA] - citrate - isocitrate - alpha-ketoglutarate - succinyl CoA - succinate - fumarate - malate - oxaloacetate - w/acetyl CoA - citrate
                B.            Initial step(s) - pyruvate converted to acetyl CoA [CO2 emission and NADH production] - acetyl CoA combines with oxaloacetate (4 carbon) to form citrate (6 carbon)
                C.            All steps from pyruvate to CO2
                                1.             Cycle (two trips) - 2 GTP (2 ATP), 8 NADH, and 2 FADH2
                D.            Final product - 6 CO2
V.            Electron transport system & oxidative phosphorylation - inner mitochondrial membrane
                A.            Convert NADH & FADH2 to ATP
                                1.             NADH (glycolysis) = 2 ATP -            4 ATP
                                2.             NADH (Krebs) = 3 ATP      -             24 ATP
                                3.             FADH2 (Krebs) = 2 ATP     -             4 ATP
                B.            How is it done?  H+ gradient (opposite of chloroplast)
                                1.             NADH & FADH2 give up H+ to outer compartment (High outside)
                                2.             H+ is then pumped back in and ATP is produced
                C.            Net yield of ATP
                                1.             From oxidative phosphorylation - 32 ATP
                                2.             Substrate level phosphorylation - 4 ATP
                                3.             TOTAL............................ 36 ATP
VI.          Secondary metabolism
                A.            From glycolysis & Krebs
                                1.             Fats, glycerol, fatty acids, amino acids, & proteins
                                                a)            Example:  Carbohydrate - (ribose) - nucleic acid
                                                b)            Example:  Amino acid - (glycine) - hemoglobin
                                                c)             Example:  Amino acid - (glutamate) - chlorophyll
                                                                                                       



                                               C6H12O6 + 6O2 + 36 ADP + 36 Pi ===> 6CO2 + 36 ATP + 6H2O

Related Posts:

  • Culture of Plant Materials in Plant Tissue Culture Culture of Plant Materials in Plant Tissue Culture: Explant Culture: There are a variety of forms of seed plants, such as trees, herbs grass, which exhibit the basic morphological units, i.e., root, stem and leaves, versa… Read More
  • Cellular Totipotency helps in Plant Tissue Culture Cellular Totipotency helps in Plant Tissue Culture: This is the capacity of nature cells showing that when freed from the plant body, they had the ability to reorganize themselves into the new individuals. Steward and his … Read More
  • Definition of the ecosystem. Meaning of Ecosystem: The populations of organisms interact with each other in biological communities, and no biotic community can live in isolation. It lives in an environment which supplies its material and energy requir… Read More
  • Somatic Hybridization of Plants Somatic Hybridization: Fusion between protoplasts of the selected parents is induced by a solution of polyethylene glycol (PEG), or by very brief high voltage electric current. Somatic hybridisation allows the production o… Read More
  • Culture of Ovaries of Plants Culture of Ovaries: Rau (1956) attempted to culture pollinated ovaries of Phlox drummondii and studied the influence of extraneous chemicals on the pattern of development of the endosperm and embryo. The addition of colch… Read More

0 Comments:

Powered by Blogger.

Visitors

219242
Print Friendly Version of this pagePrint Get a PDF version of this webpagePDF


 download University Notes apps for android

Popular Posts

Flag Counter